DIALS and BLEND

James Parkhurst

CCP4 workshop, Faridabad

February 2016

DIALS

Diffraction Integration for Advanced Light Sources

DIALS West – LBL / SLAC

Acknowledgements

research naners

Acta Crystallographica Section D	XDS	research papers					
Crystallography ISSN 0907-4449		Acta Crystallographica Section D Biological	The finer things in X-ray diffraction data collection				
ISSN 0907-4449 Wolfgang Kabsch Max-Planck-Institut für Medizinische Forschung, Abtellung Biophysik, Jahnstrasse 29, 69120 Heidelberg, Germany Correspondence e-mail: wolfgang.kabsch&mpimf-beidelberg.mpg.de	The usage and contrepackage XDS for 1 described in the con include automatic de range and recognitic Moreover, the limita number of correction pixel contents have been restructured for and completeness of measurement. 1. Functional speci The program package developed for the reprogram package developed for the represented on a planar monochromatic X-ration images from and multiwire area metrics and produce of the reflections occi way. The program as positive amount of cepication initiati directions of the rot oscillation range covident of the reflections of the reflections of the rot oscillation range covident	Biological Crystallography JSN 0907-4449 J. W. Pflugrath Molecular Structure Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA Correspondence e-mail: jwp@msc.com	X-ray diffraction images from sensitive detectors can be cha depending on whether the rotatic is greater than or less than the c The expectations and consequen and thin images in terms of spa X-ray background and $I/o(I)$ is software suite for processing of introduced, and results from d those from another popular pact 1. Introduction Two-dimensional position-sensiti for many years in X-ray diffract cular, data from crystals of macr oligonucleotides and their cor acquired with an area detector obsolete), a multi-wire system recently commercialized char coupled to a phosphor-coated fit detectors, the crystal, centered in oscillated around a single axis th ~2.0°, while counts from diffract for a specified time. At the en detector is read out and the cou two-dimensional array with each to a distinct position on the d	research papers Acta Crystallographica Section D Biological Crystallography ISN 0907-4449 Andrew G. W. Leslie MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England Correspondence e-mail: andrew@mrc-lmb.cam.ac.uk	The objective of any produce from a set of with their associated uncertainties), togeth crystal unit-cell param reliable, but should i intervention. The pro three stages. The first parameters and the o parameters may indice The second step is to r parameters and also t known as post-refinen images, which consists reflections on each in intensity of each reflec out while simultaneou parameters. Basic fea each of these three ss with reference to the j	nacromolecular diffraction data Centre National de la Recherche Scientifique Université Paris-Sud Laboratoire pour l'Utilisation du Rayonnement Electromagnétique	
					1. Introduction	Proceedings	

The collection of maci

gone dramatic advan advent of two-dimensi and CCDs, crystal cry

monochromatic and

of the EEC Cooperative Workshop

on Position-Sensitive Detector Software

(Phases I & II)

held at L.U.R.E. from May 26 to June 7, 1986.

What are we doing and why are we doing it?

Compute the intensity (and structure factor) of each Bragg spot in a set of diffraction images

$$|F_{hkl}| = \left(\frac{KI_{hkl}}{Lp}\right)^{\frac{1}{2}}$$

K = constant for given crystalL = Lorentz factorp = polarization factor

$$\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} e^{-2\pi i (hx + ky + lz)}$$

Electron density at every point in the cell depends on the intensity of every reflection. We need to measure our intensities as well as possible!

Warning: garbage in, garbage out

Data collection is the last experimental stage; if you collect bad data you are stuck with it! Data processing programs won't be able to rescue you!

On two occasions I have been asked, "Pray, Mr. Babbage, if you put into the machine wrong figures, will the right answers come out?" ... I am not able rightly to apprehend the kind of confusion of ideas that could provoke such a question.

- Charles Babbage, Passages from the Life of a Philosopher

New Challenges

Main DIALS programs

- •dials.import
- •dials.find_spots
- •dials.index
- •dials.refine_bravais_settings
- •dials.refine
- •dials.integrate
- •dials.export_mtz
- (POINTLESS/AIMLESS)

DIALS on the command line

- \$ dials.import \${data_directory}/th_8_2_0*.cbf
- \$ dials.find_spots datablock.json nproc=8
- \$ dials.index datablock.json strong.pickle
- \$ dials.refine_bravais_settings experiments.json
 indexed.pickle
- \$ dials.reindex indexed.pickle
 change_of_basis_op=a,b,c
- \$ dials.refine bravais_setting_9.json reindexed_reflections.pickle outlier.algorithm=tukey use_all_reflections=true scan_varying=true output.experiments=refined_experiments.json
- \$ dials.integrate refined_experiments.json
 refined.pickle outlier.algorithm=null nproc=4

- \$ dials.export_mtz integrated.pickle
 refined_experiments.json hklout=integrated.mtz
- \$ pointless hklin integrated.mtz hklout sorted.mtz >
 pointless.log
- \$ aimless hklin sorted.mtz hklout scaled.mtz >
 aimless.log << eof
 resolution 1.3
 anomalous off
 eof</pre>
- \$ ctruncate -hklin scaled.mtz -hklout truncated.mtz -colin '/*/*/[IMEAN,SIGIMEAN]' > ctruncate.log

Who needs a GUI?

Useful for automation

- Well defined step-by-step analysis process
- Cleanly defined command-line interface
- Comprehensive range of capabilities
- Python-compatible data files for results etc.
- Robust, tested

Less useful for automation

- Step-by-step analysis process => lots of work to integrate
- Does not include "intelligent decision making"
- Does not (really) include scaling

For more friendly user interface we can use XIA2

🔸 🕘 🔄 Phase — gw56@cs03r-sc-serv-16:/dls/i04/data/2014/nt5073-4/LIC/2/5 — ... Graemes-MacBook-Pro-3:DIALS-6 graeme\$ cd LIC25_32/ Graemes-MacBook-Pro-3:LIC25_32 graeme\$ xia2 -atom Zn -dials /Volumes/GraemeData/ data/i04-soleil/Lic25_strong/ Environment configuration... XIA2_ROOT => /Users/graeme/svn/cctbx/modules/xia2 XIA2CORE_ROOT => /Users/graeme/svn/cctbx/modules/xia2/core Python => /Users/graeme/svn/cctbx/build/../base/Python.framework/Versions/2.7/Re sources/Python.app/Contents/MacOS/Python CCTBX => /Users/graeme/svn/cctbx/modules CCP4 => /Applications/ccp4-6.5 CLIBD => /Applications/ccp4-6.5/lib/data CCP4_SCR => /var/folders/hs/gvssfcd910s0jczjhjczj6h80000gn/T/tmpreQPsS Working directory: /Users/graeme/Projects/DIALS-6/LIC25_32 Free space: 218.08 GB Build: 5267 Contact: xia2.support@gmail.com XIA2 0.3.8.0 Command line: xia2 -atom Zn -dials /Volumes/GraemeData/data/i04-soleil/Lic25_str ong/ ----- Autoindexing SWEEP1 ------All possible indexing solutions: tP 121.50 121.50 57.03 90.00 90.00 90.00 oC 171.82 171.84 57.03 90.00 90.00 90.00 57.01 121.46 121.50 90.00 90.00 90.00 oP

• Phase - gw56@cs03r-sc-serv-16:/dls/i04/data/2014/nt5073-4/LIC/2/5							
For AUTOMATIC/DEFAULT/SAD							
High resolution limit	1.54	6.89	1.54				
Low resolution limit	121.50	121.50	1.58				
Completeness	100.0	99.9	100.0				
Multiplicity	10.7	9.6	10.4				
I/sigma	17.0	39.3	3.4				
Rmerge	0.065	0.037	0.609				
Rmeas(I)	0.077	0.048	0.683				
Rmeas(I+/-)	0.072	0.040	0.675				
Rpim(I)	0.023	0.016	0.210				
Rpim(I+/-)	0.030	0.017	0.289				
CC half	0.999	0.998	0.893				
Wilson B factor	14.071						
Anomalous completeness	100.0	100.0	100.0				
Anomalous multiplicity	5.5	5.8	5.3				
Anomalous correlation	0.498	0.735	0.049				
Anomalous slope	1.251	0.000	0.000				
dF/F	0.081						
dI/s(dI)	1.260						
Total observations	682919	8089	48088				
Total unique	63570	845	4625				
Assuming spacegroup: P 42 21 2							
Unit cell:							
121,505 121,505 57,029							

dials.find_spots

DIALS: Diffraction Integration for Advanced Light Sources

dials.find_spots

- Sequence of per-image filters to find strong pixels
- 3D analysis of strong pixels to identify strong spots
- Filter spots by
 - number of pixels
 - peak-centroid distance
 - resolution
 - ice rings
 - untrusted regions

raw data

variance

variance / mean

variance / mean > 1 + sigma_s * sqrt(2/(m-1))

raw data > mean + sigma_b * sqrt(variance)

•

\$ dials.reciprocal_lattice_viewer datablock.json strong.pickle

\$ dials.reciprocal_lattice_viewer datablock.json strong.pickle

DIALS: Diffraction Integration for Advanced Light Sources

- Choice of 1D & 3D FFT methods or new real space grid search algorithm
- Optionally provide known unit cell and space group

\$ dials.index datablock.json strong.pickle
Found max_cell: 199.1 Angstrom
Setting d_min: 3.89

RMSDs by experiment:

Exp	Nref	RMSD_X (px)	RMSD_Y (px)	RMSD_Z (images)
0	4049	0.2881	0.25838	0.17767

```
Final refined crystal models:
model 1 (114690 reflections):
Crystal:
    Únit cell: (57.804, 57.782, 150.027, 90.009, 89.991, 89.990)
      Space group: P
U matrix: {{ (
                             0.3455, -0.2589,
0.8914, 0.3909,
0.2933, -0.8833,
0.0173, 0.0000,
-0.0000, 0.0173,
-0.0000, 0.0000,
0.0060, -0.0045,
0.0154, 0.0068,
0.0051, -0.0153,
                                                            -0.9020},
                                                              0.2292
                                                              0.3659
      B matrix:
                                                              0.0000
                                                              0.0000
                                                              0.0067
      A = UB:
                                                             -0.0060
                                                              0.0015
                                                              0.0024\}
```

Saving refined experiments to experiments.json Saving refined reflections to indexed.pickle

Real space grid search

- In many cases the unit cell is known - why not make use of this information?
- 1D FFT (DPS) and 3D FFT algorithms try to determine the magnitude and direction of the basis vectors simultaneously
- If the unit cell is already known, then we only need to determine the direction of the basis vectors

dials.index

x-coordinate (mm)

x-coordinate (mm)

dials.refine_bravais_settings

\$ dials.refine_bravais_settings experiments.json indexed.pickle

Solution Metric fit rmsd min/max cc #spots lattice unit_cell volume cb_op 9 0.0250 0.073 0.787/0.848 4049 tP 57.78 57.78 149.99 90.00 90.00 90.00 500681 a,b,c 8 0.0250 0.072 0.787/0.970 4049 oC 81.71 81.73 150.00 90.00 90.00 90.00 1001813 a-b,a+b,c 7 0.0133 0.071 0.787/0.899 4049 oP 57.78 57.76 149.98 90.00 90.00 90.00 1001813 a-b,a+b,c 6 0.0217 0.071 0.970/0.970 4049 mC 81.72 81.74 150.02 90.00 89.99 90.00 1002178 a-b,a+b,c 5 0.0250 0.072 0.795/0.795 4049 mC 81.73 81.71 150.01 90.00 89.99 90.00 1001809 a+b,-a+b,c 4 0.0131 0.070 0.807/0.807 4049 mP 57.77 57.77 149.99 90.00 8														
9 0.0250 0.073 0.787/0.848 4049 tP 57.78 57.78 149.99 90.00 90.00 90.00 500681 a,b,c 8 0.0250 0.072 0.787/0.970 4049 oC 81.71 81.73 150.00 90.00 90.00 90.00 1001813 a-b,a+b,c 7 0.0133 0.071 0.787/0.899 4049 oP 57.78 57.76 149.98 90.00 90.00 90.00 500537 a,b,c 6 0.0217 0.071 0.970/0.970 4049 mC 81.72 81.74 150.02 90.00 89.99 90.00 1002178 a-b,a+b,c 5 0.0250 0.072 0.795/0.795 4049 mC 81.73 81.71 150.01 90.00 89.99 90.00 1001809 a+b,-a+b,c 4 0.0131 0.070 0.807/0.807 4049 mP 57.779 149.99 90.00 90.00 500732 a,b,c 2 0.0133 0.070 0.899/0.899 4049 mP 57.777 150.00 <td>Solution</td> <td>Metric fit</td> <td>rmsd</td> <td>min/max cc</td> <td>#spots</td> <td>lattice</td> <td></td> <td></td> <td></td> <td></td> <td>uni</td> <td>t_cell</td> <td>volume</td> <td>cb_op</td>	Solution	Metric fit	rmsd	min/max cc	#spots	lattice					uni	t_cell	volume	cb_op
	9 8 7 6 5 4 3 2 1	0.0250 0.0250 0.0133 0.0217 0.0250 0.0131 0.0133 0.0125 0.0000	0.073 0.072 0.071 0.071 0.072 0.070 0.070 0.070 0.071 0.070	0.787/0.848 0.787/0.970 0.787/0.899 0.970/0.970 0.795/0.795 0.807/0.807 0.899/0.899 0.787/0.787 -/-	4049 4049 4049 4049 4049 4049 4049 4049	tP oC oP mC mP mP mP aP	57.78 81.71 57.78 81.72 81.73 57.76 57.79 57.77 57.80	57.78 81.73 57.76 81.74 81.71 57.79 57.77 149.99 57.77	149.99 150.00 149.98 150.02 150.01 149.99 150.00 57.79 150.01	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.01	90.00 90.00 90.00 89.99 89.99 90.01 89.99 89.99 89.99 89.99	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 89.99	500681 1001813 500537 1002178 1001809 500676 500732 500744 500927	a,b,c a-b,a+b,c a,b,c a-b,a+b,c a+b,-a+b,c a+b,-a,-c a,b,c b,c,a a,b,c

\$ ls bravais_setting_*.json bravais_setting_1.json bravais_setting_2.json bravais_setting_3.json bravais_setting_4.json bravais_setting_5.json bravais_setting_6.json bravais_setting_7.json bravais_setting_8.json bravais_setting_9.json

dials.refine

DIALS: Diffraction Integration for Advanced Light Sources

Centroid refinement

- Refine parameters that affect central impacts*
- Parameters that affect general impacts (mosaicity, Δλ, etc) are determined by profile modelling

Parameterisation

There are 18 parameters in the P 1 case:

Table 1. Default parameterisation in dials.refine for scan-static refinement using a sin							
		panel detec	tor.				
Parameterisation	Model state	Parameters	Action				
		μ_1	rotation about initial $\hat{\mu}_2 \times \hat{\mathbf{s}}_0$				
Beam	s ₀	μ_2	rotation about initial $\hat{\mathbf{s}}_0 \times \hat{\mathbf{e}}$				
		ν	set length of s_0 (wavenumber)				
		ϕ_1	rotation about laboratory X				
Crystal orientation	U	ϕ_2	rotation about laboratory Y				
		ϕ_3	rotation about laboratory Z				
		g_{11}^{*}					
	В	g_{22}^{*}					
Crustal unit call		g_{33}^{*}	ast matrical matrix alamanta				
Orystai unit cen		g_{12}^{*}	set metrical matrix elements				
		g_{13}^{*}					
		g_{23}^{*}					
		p_0	set distance along initial $\mathbf{d}_{\mathbf{f}} \times \mathbf{d}_{\mathbf{s}}$				
		t_1	translation along initial $\hat{\mathbf{d}}_{\mathbf{f}}$				
Detector	d	t_2	translation along initial $\hat{\mathbf{d}}_{\mathbf{s}}$				
Detector		τ ₁	rotation about initial $\hat{\mathbf{d}}_{\mathbf{f}} \times \hat{\mathbf{d}}_{\mathbf{s}}$				
		To.	rotation about initial d.				
		70	rotation about initial d				
		13	rotation about middl ug				

Usually v and μ_1 are fixed

Scan-varying refinement

- We do global, not local, refinement
- How to model changes to the crystal model over time?
- Scan divided into equal-sized intervals
- Crystal parameterisation split over sample points
- Gaussian smoother, inspired by AIMLESS

Scan-varying refinement

- 117 parameters:
- 6 detector
- 1 beam
- 3 crystal orientation × 22 "samples"
- 2 unit cell parameters × 22 "samples"

Scan-varying refinement

117 parameters:

- 6 detector
- 1 beam
- 3 crystal orientation × 22 "samples"
- 2 unit cell parameters × 22 "samples"

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

Cubic polyhedrin crystals, 1° scans

One lattice

5 sweeps (16 lattices)

Joint refinement

Use joint refinement as a preparatory step for BLEND

TehA data. See forthcoming Acta Cryst. D71 (June 2015) for original analysis

dials.integrate

DIALS: Diffraction Integration for Advanced Light Sources

Tasks in dials.integrate

Computing reflection shoeboxes

Profile coordinate system

Use the kabsch model of a normal distribution on the surface of the Ewald sphere

$$\exp(\frac{-\epsilon_1^2}{2\sigma_D^2})\exp(\frac{-\epsilon_2^2}{2\sigma_D^2})\exp(\frac{-\epsilon_3^2}{2\sigma_M^2})$$

 $e_1 = S_1 \times S_0 / |S_1 \times S_0|$ $e_2 = S_1 \times e_1 / |S_1 \times e_1|$ $e_3 = (S_1 + S_0) / |S_1 + S_0|$

Computing reflection shoeboxes

 $\sigma_{\rm D}$ is calculated from the spread of angles between the predicted diffracted beam vector and the vector for each strong pixel in the spot

 $\sigma_{\rm M}$ is calculated by maximum likelihood method assuming a normal distribution of phi residuals for each strong pixel in the spot

Background modelling

Background models

- Options to model the background under the peak as either
 - A constant across each image
 - A constant across all images
 - A plane across each image
 - A hyper-plane across all images
- Computed using simple linear least squares

Integration

- Integration algorithm options:
 - Summation
 - 3D profile fitting (as in XDS)
 - 2D profile fitting (future)

3D profile fitting coordinate system

Profile coordinate system

Use Kabsch coordinate system

- Corrects for geometrical distortions
- Makes spots appear to have taken shortest path through Ewald sphere
- Model assumes a Gaussian profile in Kabsch coordinate system

$$e_1 = S_1 \times S_0 / |S_1 \times S_0|$$

$$e_2 = S_1 \times e_1 / |S_1 \times e_1|$$

$$e_3 = (S_1 + S_0) / |S_1 + S_0|$$

3D profile fitting pixel gridding

Pixels are mapped to the Ewald sphere

Counts are redistributed to Ewald sphere grid by computing fractional overlap of each pixel and Ewald sphere grid point

3D profile fitting phi gridding

Frames are transformed to make reflection appear as if it took the shortest path through the Ewald sphere

Counts on each image are distributed by finding the angular overlap between each grid point and each image and integrating over the intersection

Building reference profiles

- Reference profiles are formed on a grid covering a given angular range
- Grid options include:
 - Rectangular grid (as in Mosflm)
 - Circular grid (as in XDS)
 - Single reflection (currently for multi-panel detectors)

Building reference profiles

Each strong spot contributes to building the profile at adjacent grid points

Fitting reference profiles

Each reflection is fitted against its closest reference profile

Profile for reflection at position x derived from average of strong reflections in block with centre nearest x

http://dials.diamond.ac.uk/doc/documentation/tutorials/

DIALS

Diffraction Integration for Advanced Light Sources

Navigation

About Installation Getting started Documentation Publications Links License

Processing in Detail

Introduction

DIALS processing may be performed by either running the individual tools (spot finding, indexing, refinement, integration, exporting to MTZ) or you can run xia2 -dials, which makes informed choices for you at each stage. In this tutorial we will run through each of the steps in turn, checking the output as we go. We will also enforce the correct lattice symmetry.

Tutorial data

The following example uses a Thaumatin dataset collected using beamline IO4 at Diamond Light Source which is available for download from DOI 10.5281/zenodo.10271

Import

The first stage of step-by-step DIALS processing is to import the data - all that happens here is that the image headers are read, and a file describing their contents (<u>datablock.json</u>) is written. It's worth noting that if this file is changed subsequent processing can use this.

dials.import data/th_8_2_0*cbf

The output just describes what the software understands of the images it was passed, in this case one sweep of data containing 540 images.

Find Spots

Navigation

Getting started

Using xia2

Installation

Introductory example

Insulin tutorial

Program output

Parameters

Comments

History

Acknowledgements

Release notes

License

Quick start guide

If you don't like reading manuals and just want to get started, try:

xia2 -2d /here/are/my/images

xia2 -3d /here/are/my/images

or:

or:

xia2 -dials /here/are/my/images

(remembering of course -atom X if you want anomalous pairs separating in scaling.) If this appears to do something sensible then you may well be home and dry. Some critical options:

Option	Usage
-atom X	tell xia2 to separate anomalous pairs i.e. I(+) \neq I(–) in scaling
-2d	tell xia2 to use MOSFLM and Aimless
-3d	tell xia2 to use XDS and XSCALE
-3dii	tell xia2 to use XDS and XSCALE, indexing with peaks found from all images
-dials	tell xia2 to use DIALS and Aimless

If this doesn't hit the spot, you'll need to read the rest of the documentation.

http://xia2.sourceforge.net/quick_start.html

Non-planar detectors

- Long wavelength beamline I23 @ Diamond Light Source
- Custom P12M
- Excellent data experiment in vacuum
- Support simple via dxtbx

Data

- Very low background (in vacuum)
- Very sharp spots despite lack of beam focussing at the time
- Data collection at 9 keV
- Two theta to around 75^o hence design of detector
- Currently single axis goniometer

Data at low resolution

Results

- Processed using "standard" script
- Scaled with AIMLESS again using standard commands
- Phased with shelxc/d/e gives excellent maps

	Overall	InnerShell	OuterShell
Low resolution limit	28.93	28.93	1.12
High resolution limit	1.10	6.02	1.10
Rmerge (within I+/I-)	0.047	0.022	0.715
Rmerge (all I+ and I-)	0.050	0.025	0.766
Rmeas (within I+/I-)	0.052	0.024	0.820
Rmeas (all I+ & I–)	0.053	0.027	0.821
Rpim (within I+/I-)	0.022	0.009	0.392
Rpim (all I+ & I-)	0.016	0.008	0.288
Rmerge in top intensity bin	0.023	-	-
Total number of observations	910205	7848	30945
Total number unique	93738	781	4010
Mean((I)/sd(I))	15.3	37.0	2.5
<pre>Mn(I) half-set correlation CC(1/2)</pre>	1.000	1.000	0.634
Completeness	90.2	99.3	79.0
Multiplicity	9.7	10.0	7.7
Anomalous completeness	88.6	100.0	77.6
Anomalous multiplicity	4.9	6.2	3.9
DelAnom correlation between half-sets	0.109	0.467	0.024
Mid-Slope of Anom Normal Probability	0.917	-	-

X-FEL Metrology

- Quadrant-level detector metrology
- Joint refinement across ~ 100 shots
- dials.find_spots + dials.index + dials.combine_experiments + dials.refine

X-FEL Metrology: before

X-FEL Metrology: after

Not just data processing

DIALS: Diffraction Integration for Advanced Light Sources

DIALS is a toolbox

Full toolbox

dials.analyse_output dials.background_lookup dials.check_indexing_symmetry dials.combine_experiments dials.compare_mosflm_dials dials.compare mosflm xds dials.compare_orientation_matrices dials.compare_reflections dials.compare_xds_dials dials.compare xds dials2 dials.create_profile_model dials.detector_max_resolution dials.discover_better_experimental_model dials.display_reference_profiles dials.dge dials.estimate_resolution_limit dials.export dials.export mosflm dials.export_mtz dials.export_nxmx dials.export_nxmx_to_mtz dials.export spot xds dials.export_text dials.export_xds

dials.extract_shoeboxes dials.filter good intensities dials.filter reflections dials.find_hot_pixels dials.find_overlaps dials.find_spots dials.find_spots_client dials.find_spots_server dials.generate_mask dials.generate process test reflections dials.generate_test_reflections dials.image_viewer dials.import dials.import xds dials.index dials.integrate dials.merge_cbf dials.merge_reflection_lists dials.plot_reflections dials.plot_scan_varying_crystal dials.predict dials.print test reflections dials.process dials.python

dials.pythonw dials.reciprocal lattice viewer dials.refine dials.refine_bravais_settings dials.reflection_viewer dials.reindex dials.remove_absent_reflections dials.rs_mapper dials.show_build_path dials.show dist paths dials.show_extensions dials.show_indexed_strong dials.show_isig_rmsd dials.show models dials.show_profiles dials.show_spots dials.simulate dials.simulate_rs dials.slice sweep dials.sort_reflections dials.split_experiments dials.spot counts per image dials.stereographic_projection

@ 15-05-2015 15:50:35 - GIIso/GIIso_M6S7_1_####.cbf

Sample: GI_7	Ω Start: 0.0°
Ω Osc: 0.15°	Ω Overlap: 0°
No. Images: 2400	Resolution: 2.27Å
Wavelength: 1.8903Å	Exposure: 0.040s
Transmission: 0.50%	Beamsize: 11x5µm

Type: Data Collection

Comment: (900,189,-14) EDNAStrategy3: subWedge:1Aperture: Large

Fast DP: 🛷 Xia2: 🕤 💥 💥 Auto Processing Fast DP DIALS β **Space Group** С Y A в α DLog file DLookup Cell JMTZ file 98.22 1222 93.04 102.79 90.00 90.00 90.00 Observations Unique Resolution I/sig(I) Completeness Multiplicity Anom Completeness Anom Multiplicity Shell Rmeas outerShell 947 519 1.90 - 1.95 0.571 2.0 18.5 1.8 4.3 1.5 11.9 7.2 innerShell 6208 521 8.29 - 71.01 0.082 17.8 99.9 100.0 5.8 overall 341484 30333 1.90 - 71.01 0.148 11.8 81.4 11.3 78.7

A PRAILING DE RECOORDER DE CONSCER -----------IN INCOME A 2 CORRECT ON A DELTA BALLER AND A DELTA DELLA DE h

Multiplicity Viewer

Viewing missing reflections

Image viewer: Raw data

Image viewer: spots

Summary

- DIALS now used routinely for automated data processing via xia2
- xia2 is the "friendly" DIALS user interface for synchrotron data, and is bundled with DIALS
- Software available from github under BSD license
- Currently in "alpha" your mileage may vary etc.
- Binary releases available for Mac and Linux (Windows coming soon)
- Is included in CCP4 7.0
- Currently doesn't have a GUI (in development)

BLEND

Management of Data from Multiple Crystals

James Foadi (author)

Imperial College London

In a nutshell

Single Crystal

Established Methods and Software

Multiple Crystals

What is **BLEND**

Tool to manage/process multiple data sets from multiple crystals (scaling)

Help to reduce the large number of data implied by the combination of multiple data sets:
a) cluster analysis on cell parameters;
b) scaling all cluster produced
c) filtering out data sets

"Environment" to help knowing better the quality of your data

Example

- *in situ* Tellurite resistance protein homolog
- 67 wedges / 56 crystals ; 6 to 10 degrees oscillation
- Space group H3

Linear Cell Variation

Dendogram

Dendogram

Individual datasets

Annotated dendogram

Cluster 57 shows a good value of Rmeas.

Cluster 58 shows a bad value of Rmeas.

Cluster 54 is "polluting" the good quality of cluster 57.

Cluster 60 is "polluted" by cluster 58, but could also be "polluted" by cluster 49.

We need to combine cluster 57 with groups of data sets or individual data sets of cluster 54, in order to form a "cleaned" cluster 58. Then we combine with data sets from cluster 49, in ordert o form a "cleaned" cluster 60.

Filtered dendogram

Further reading

First published paper:

J. Foadi, P. Aller, Y. Alguel, A. Cameron, D. Axford, R. L. Owen, W. Armour, D. G. Waterman, S. Iwata and G. Evans *Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography* Acta Cryst. (2013), D**69**, 1617-1632

See also:

BLEND user guide

Diamond web site and in BLEND installation package (or on request)

Tutorials In BLEND installation package (or on request)

Acknowledgements

BLEND RESEARCH

James Foadi Gwyndaf Evans (PI) Pierre Aller

IN-SITU MEMBRANE PROTEIN Yilmaz Alguel

Nien-Jen Hu Danny Axford Gwyndaf Evans Kostantinos Beis Hassanul Choudhury

FUNDING

Wellcome Trust

MPL SUPPORT

Isabel DeMoraes Momi Iwata So Iwata

I24 SUPPORT Danny Axford

DIAMOND SOFTWARE SUPPORT Alun Ashton Karl Levik

Thanks for listening!

https://github.com/dials